P.L. Bhatnagar, E.P. Gross, M. Krook. A Model for Collision Processes in Gases. Phys. Rev. 9 4, 511, (1954).
M. Bouzidi, M. Firdaouss, P. Lallemand. Momentum transfer of a Boltzmann- Lattice fluid with boundaries. Physics of Fluids 1 3(11), 3452–3459, (2001). CrossRef
M. Brenk, H.-J. Bungartz, M. Mehl, and T. Neckel. Fluid-Structure Interaction on Cartesian Grids: Flow Simulation and Coupling Environment. In H.-J. Bungartz and M. Schäfer, editors, Fluid-Structure Interaction: Modelling, Simulation, Optimisation. Springer Verlag, (2006).
S. Chapman, T.G. Cowling. The mathematical theory of non-uniform gases. Cambridge University Press, (1970).
J. Chung, G. Hulbert. A Time Integration Algorithm for Structural Dynamics with Improved Numerical Dissipation: The Generalized-á-Method. J. of Applied Mechanics, vol. 60, pp. 1562–1566, (1993). MathSciNet
B. Crouse, E. Rank, M. Krafczyk, J. Tölke. A LB-based approach for adaptive flow simulations. Int. J. of Modern Physics B 17, 109–112, (2002).
B. Crouse. Lattice-Boltzmann Strömungssimulationen auf Baumdatenstrukturen. PhD thesis (german), TU München, (2002).
A. Düster, H. Bröker, H. Heidkamp, U. Heißerer, S. Kollmannsberger, R. Krause, A. Muthler, A. Niggl, V. Nübel, M. Rücker, D. Scholz. AdhoC 4 – User’s Guide. Lehrstuhl für Bauinformatik, TU München, (2004).
O. Filippova, D. Hänel. Boundary-Fitting and Local Grid Re.nement for LBGK Models. Int. J. Mod. Phys. C (8), 1271, (1998).
U. Frisch, D. d’Humiéres, B. Hasslacher, P. Lallemand, Y. Pomeau, J.P. Rivet. Lattice gas hydrodynamics in two and three dimensions. Complex Sys. 1. 649- 707, (1987). MATH
S. Geller, M. Krafczyk, J.
Tölke, S. Turek, J. Hron. Benchmark computations based on Lattice-Boltzmann, Finite Element and Finite Volume Methods for laminar Flows. accepted for Comp.Fluids, (2004).
I. Ginzburg, D. d’Humiéres. Multi-re.ection boundary conditions for Lattice- Boltzmann models. Phys. Rev. E 68, 66614, (2003).
X. He, L.-S. Luo. Lattice Boltzmann model for the incompressible Navier-Stokes equation. Journal of Statistical Physics 88, 927–944, (1997). MATH MathSciNet CrossRef
X. He, L.-S. Luo. Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56, 6811, (1997). CrossRef
D. d’Humiéres. in Rare.ed Gas Dynamics: Theory and Simulations. Prog. Astronaut. Aeronaut. Vol. 1 59, edited by B. D. Shizgal and D. P. Weaver AIAA, Washington, D.C. (1992).
D. d’Humiéres, I. Ginzburg, M. Krafczyk, P. Lallemand, L.-S. Luo. Multiplerelaxation- time lattice Boltzmann models in three-dimensions. Philosophical Transections of Royal Society of London A 360(1792), 437–451, (2002). CrossRef
M. Junk. A Finite Di.erence Interpretation of the Lattice Boltzmann Method. Num. Meth. Part. Di. Equations Vol. 17, 383–402, (2001). MATH MathSciNet CrossRef
M. Junk, A. Klar, L.-S. Luo. Theory of the Lattice Boltzmann Method: Mathematical Analysis of the Lattice Boltzmann Equation. preprint, (2004).
P. Lallemand, L.-S. Luo. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Physical Review E 61 6546–6562, (2000).
MathSciNet
P. Lallemand, L.-S. Luo. Lattice Boltzmann method for moving boundaries. Journal of Computational Physics 1 84, 406–421, (2003). MathSciNet CrossRef
R. Löhner, J.D. Baum, E.L. Mestreau, D. Sharov, Ch. Charman and D. Pelessone. Adaptive Embedded Unstructured Grid Methods. AIAA-03–1116, (2003).
W. E. Lorensen and H. E. Cline. Marching Cubes: a high resolution 3D surface construction algorithm. In Siggraph, volume 21, pages 163–169. ACM, (1987). CrossRef
L.-S. Luo. Consistent Initial Conditions for LBE Simulation. preprint, (2006).
J. Mackerle. Finite element linear and nonlinear, static and dynamic analysis of structural elements: a bibliography. International Journal for Computer-Aided Engineering, 1 4 (4):347–440 (1997). MathSciNet CrossRef
R. Mei, D. Yu, W. Shyy, L.-S. Luo. Force evaluation in the lattice Boltzmann method involving vurved geometry. Phys. Rev. E 65, 041203, (2002).
N.-Q. Nguyen, A.J.C. Ladd. Sedimentation of hard-sphere suspensions at low Reynolds number submitted to J. Fluid Mech. (2004).
Y. H. Qian, D. d’Humiéres, P. Lallemand. Lattice BGK models for Navier- Stokes equation. Europhys. Lett. 1 7 479–484, (1992).
M. Rheinländer. A Consistent Grid Coupling Method for Lattice-Boltzmann Schemes. J. of Statistical Physics, Vol. 121, (2005).
P. le Tallec, J. Mouro. Fluid Structure Interaction with Large Structural Displacements. Computer Methods in Applied Mechanics and Engineering, 190, 24–25, pp 3039–3068, (2001). MATH CrossRef
N. Thürey. A single-phase free-surface Lattice-Boltzmann Method. diploma thesis, IMMD10, University of Erlangen-Nuremberg, (2003).
J. Tölke, S. Freudiger, M. Krafczyk. An adaptive scheme using hierarchical grids for lattice Boltzmann multi-phase flow simulations. accepted for Comp.Fluids, (2004).
S. Turek, J. Hron. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In H.-J. Bungartz and M. Schäfer, editors, Fluid-Structure Interaction: Modelling, Simulation, Optimisation. Springer Verlag, (2006).
D. Yu. Viscous Flow Computations with the Lattice Boltzmann equation method. PhD thesis, Univ. of Florida, (2002).
D. Yu, R. Mei, W. Shyy. A multi-block lattice Boltzmann method for viscous fluid flows. Int. J. Numer. Methods Fluids 39(2). 99–120, (2002). MATH CrossRef