Our Guarantees Our Quality Standards Our Fair Use Policy
What Makes UK Essays Different?
- We have a verifiable trading history as a UK registered company (details at the bottom of every page).
- Our Nottingham offices are open to the public where you can meet our team of over 40 full-time staff.
- UK Essays partner with Feefo.com to publish verified customer testimonials – both good and bad!
Ask an Expert FREE
Ask an Expert Index Ask a Question Paid Services
About Our Ask an Expert Service
Our totally free “Ask an Expert” Service allows users to get an answer of up to 300 words to any academic question.
- Questions typically answered within 24 hours.
- All answers are researched and written by fully qualified academics in the question’s subject area.
- Our service is completely confidential, only the answer is published – we never publish your personal details.
- Each professional answer comes with appropriate references.
About Us
More About Us
Essay Writing Service
We look at the possibility of implementing micro hydro power plants in small scale water distribution systems like tube wells and over head community tanks.
Introduction
History of Hydro Power
Hydropower was one of the earliest energy sources to reduce people work load. Early irrigation systems existed at least 5000 years ago of which the Noria was probably the earliest water-power device that rises water for this purpose. The device has evolved in deferent regions of the Middle and Far East. The first water mills were probably the vertical-axis corn mills which seem to have appeared during the first century BC in the Middle East [1].
In later centuries, water mills have developed sophistically and people started using them for other applications which included mining, paper making, iron working and wool industry.
The range of efficiencies for the water wheels during the seventeenth century varied from 1 to 60 horsepower [1].
Later on, and as a result of the industry growth the first water turbine was patented by the French engineer Benoit Fourneyron. The turbine was a submerged vertical axis machine which used the guide vanes to direct the water on the blades and increased the efficiency of the turbine.
The potential energy stored in large reservoirs are converted into electricity by the used of turbines and generators. Not only does this result in an emission free power production but also a sustainable source of energy.
The world’s total hydropower generated is about 2593 TWh/year (average over 4 Years 1999-2002. Source BP: 2003).Large scale projects primarily across Asia and South America with production capacities over 1000 MW constitute the majority of the world’s hydropower. The further enhancement of the existing projects or the implementation of new power schemes has constraints both environmental and economical.
National hydro contributions (average over 4 Years 1999-2002. Source BP: (2003)
Hydro power is the most important renewable source of energy worldwide and contributes to 20% of the world’s electricity. China currently has the largest hydro electric power plant with the world with the capacity of 22.5 GW [2].
Source Online: en.wikipedia.org/wiki/File:Ren2008.jpgRen2008
MICRO HYDROPOWER
Micro Hydropower systems are basically small power sources that are mostly used for individual users or group of users making them independent of the Local power Supplier.
It is one of the most cost effective and reliable source of producing power. Its key advantages include:
It has a high efficiency (e.g. 80 – 90%), the best of all energy technologies.
It has a high capacity factor (typically 50%)
It has a High predictability level, which varies rainfall patterns annually
These systems are durable, such system are designed to last
for more than 50 years.
BASICS OF MICRO HYDROPOWER
Head
Power is obtained from water that is coming from a respectable height that is called head. A simple hrizontal flowing water will not provide you with good hydraulic power. So consevation of energy takes place in water coming from a defined Head and resulting in power generation. So the two things that matter the most is Head and Flow. Its better to have a higher Head than high flow beacuase in this way we can make our design small. We don’t include Gross head in calculating power. Gross head is basically the distance between up and down streanm levels. So the turbine only takes the available head that is less than the Gross head and it is called Net head
Flow Rate
Comprehensive
Plagiarism-free
Always on Time
Marked to Standard
Flow rate is basically the volume of water passing in 1 second aand it is measured in cubic meter per second.
Output Power:
P is the mechanical power η is the effeciency
Ï is the density of water g is acceleration due to Gravity
Q is the flow rate H is the Head
Classification of Hydropower
Hydropower systems are mainly distrubutes in some categories like small, medium. large. micro, mini according to their power generation.
Classification of Hydro Power
More than 100MW and feeding into a large electricity grid
15MW – 100MW usually feeding into a grid
1MW – 15MW usually feeding into a grid
Above 100kW, but below 1MW, either stand alone systems ormore often feeding into a grid
From 5kW to 100kW, usually provided for a small community or rural industries in remote areas away from the grid.
From a few 100Watts upto 5kW
Main Elements for Micro Hydropower Scheme
Turbines
Water has potential energy at Head which is converted into Kinetic energy when it comes down through the penstock pipe. That kinetic Energy is than converted into Mechanical Energy by the turbines.
We have to choose turbines according to our design setup which includes Head and Flow. Different turbines are made for different heads available to get the required result. These classifications are given as under:
Â
Kaplan
Energy consumption of South Asian Countries in million toe[4]
The total hydro power potential of the South Asian countries is much more than what is currently being utilized. Environmental impact, lack of funding, geographical difficulties etc. are some of the major obstacles in the faced in the further development of hydro power. However micro hydro power is relatively untapped in these regions.
Bangladesh
In Bangladesh, hydropower capacity stands at 230MW currently, with the only hydroelectric project being the Karnafuly Hydro Electric Scheme [4]. In 1981, Bangladesh had carried out a survey in order to identify the potential of micro hydro power. The findings of the survey are given below.
Potential Energy (kW)
Name of river and site
Min
Mean
Old Brahmaputra at Bhairab Bazar
Summary of Survey Findings [4]
Out of the suitable locations identified there a power scheme was constructed for only one of the sites.
There are also a number of rivers that carry a high discharge during the monsoon months that dry up during the summer. A suitable scheme would involve the construction of diversion structures across rivers, construction of weirs and suitable power houses. The annual output potential from these rivers is estimated at 35kW and the annual energy production at 307GWh [4].
Pakistan
The annual electricity generation capacity in Pakistan is about 19,547MW, out of which 6599MW comes from hydro electric power [6]. The development of Micro Hydro power in the northern parts of the country serves the under developed communities.
The approximate hydro power potential is estimated to be 41,722MW of which only 15% has been harnessed successfully. Given below is the summary of the hydro power potential in various regions of Pakistan [6].
Projects in operation (MW)
Public sector projects (MW)
Private sector projects (MW)
Projects with feasibility study (MW)
Projects with pre-feasibility study/ raw sites (MW)
Summary of Hydro Electric Power Potential in Pakistan[6]
A number of manageable high terrain waterfalls exists in North Pakistan. These areas are sparsely populated and can benefit from micro hydro power. About 300MW of recoverable potential upto 100W each is identified in the Northern waterfalls. Also the low head and high discharge canals present in Punjab can account for about 350MW of power derived from about 300 identified locations.
India
India currently ranks 5th in the world in the availability of usable hydro electric potential at 84,000MW at 60% load factor. But only 25% of this is currently being explored. In 2006, out of the 125,000MW generated 32,325MW was contributed by hydropower [7]. Given below is the basin wise statistics.
Potential Developed (MW)
Potential Under Development (MW)
Balance Potential (MW)
Central Indian Rivers
West Flowing Rivers
East Flowing Rivers
Basin-wise potential and status of Development at 60% load factor as of 1st January, 2005 [8]
The potential for micro hydro power is immense throughout India. A number of plants have been set up in the Himalayan region where the rivers are perennial. The current focus in the country is the development of small hydro power plants with capacities of over 1MW. But however the government encourages micro hydro power in the form of various subsidies.
DISCUSSION
Explanatory Data
This is a Micro-Hydropower System which requires no reservoirs like dams, rivers and stream flows. Water from Water Supply Network stored in a tank at a height (Head) is utilized for power generation. The water supply network provides a continuous water supply and such network setups are present in all parts of the world. The generated power is utilized different electric networks. This process of replacement of conventional fuels with renewable energy is very much economical as it eliminates the utility bill payment factor which is a huge concern in today’s world. If we can utilize this technique we can at least save lot of energy so that local supply authority network will not be overloaded or we can shift overload to off-peak so that we can avoid load shedding over loading of system.
The components used in micro hydropower generation are as follows:C:\Users\RHZD\Desktop\HYDRO\Untitled.jpg
System Block Diagram
A. Water supply network
The tube well (or any desalination plant) is used as water supply network of which water from the ground is sucked through pipes using electric motors to supply the storing tank. This water supply network scheme is at ground level and is commonly used everywhere.
B. Overhead tank
An overhead tank at a respectable height, beside the water supply network (tube well) has been utilized for the Head.
The tank will store the potential energy for the purpose. This energy is then converted into mechanical energy by a small turbine. Water from tube will directly go to storing tank through proper channel of supply pipes.
C. Power House Mechanism
The power house design consists of a turbine coupled with a generator at the users premise. Pressure of the water as potential energy has been utilized to run turbine at a specific speed. The turbine runs the generator and produces electricity in a way that power produced could also be supplied to local loads or stored in batteries. Water from the turbines is then supplied to neighboring local bodies.
Two efficiencies are involved here, the mechanical and the electrical. Utility bill is reduced by power house production since the power for running motors is saved by the production of power house and by also supplying back the extra generation to the grid which saves their bill too. So load on the supply authority has been reduced to some extent in this way.
Case Study
Assuming we need to supply a small park and the surrounding with power through an existing setup with a new approach of Hydropower production.
The main power to the park is provided by the local supply authority which has its own water supply network (tube well). Utilizing the present continuous water supply network we will generate the required power. The project will minimize the expense of power consumption by the park and surroundings.
Power Requirements
The power generate by the Hydropower plant will be mostly utilized for lighting and fans. A unit of 17.55kW is designed to be installed at the site that shall remain operational throughout the year provided standard operation and maintenance procedure are adopted. The possibility of variation in capacity is subjected to discharge. The power calculations are based on the following assumptions:
Energy savers: 250 (each of 48watts)
= 250*48 = 12000 watts
Fans 1 in each shop (95 watt each)
= 95*20 = 1900 watts
Total power consumption = 13900 watts
Total power generated is 17.55kW, whereas, the consumption is estimated to a tune of 13.9kW. The remaining 3.65kW will be accounted for transmission/distribution line losses and future demand.
Numerical Data
Hg = 21.219m = 69.6168 ft
Hn = 20m = 65.6168 ft
Results and Conclusion
The design works in the same way as other hydropower plants but it does not require any reservoirs like dams, rivers or stream flow, instead it utilizes the water supplied by the general water supply network i.e. by the Tube well. These Tube wells are present ubiquitously. Water from this network goes to an overhead tank which is installed just besides the tube well.
Water with a potential at a respectable height flows down towards the turbine through penstock pipe with a respectable flow, for desired output. Cross flow turbines is coupled with the generator and are installed in the power house. Water flowing through penstock pipe starts the turbine which converts the kinetic energy of water into mechanical energy which in turn is converted into electrical energy by the coupled Generator. An electrical panel is also installed in power house which controls and supply the generated power.
The generated power is used to run the motors installed is Tube wells shifting it from local power supply to our hydropower plants supplied power and excess power will be utilized by other electric networks (based on our needs). The outgoing water from turbine is utilized for other domestic purposes. In this way generated power according to design parameters comes out to be 37.8KW with cross over turbine with efficiency of 80 percent. running at 499 rpm, flow rate comes out to be 161 lit/sec. Overall efficiency of network is Civil work is negligible here .
Since power taken by tube well motor is 30 KW (30 horse power). 7 KW power is saved which is utilized for other purposes. Load on local supplier has been reduced. Thus 7 KW power can be supplied to children parks etc and also to batteries for storage.
Future Work
In future the work can be improved much by improving the diameter of pipe through which water flows from tank. Discharge could be improved much further by working on penstock. Also solar energy can be utilized with hydal energy to be independent of power supplying companies for starting motor. Further work could be done to introduce cascading systems of tube wells, motors and also storing tanks. Thus distributed networks of power improve economy as well as removes centralized power supplying policies. Also everyone in the state could be independent of its own production and utilization.
Request Removal
If you are the original writer of this essay and no longer wish to have the essay published on the UK Essays website then please click on the link below to request removal:
More from UK Essays