Antoulas, A.C. Anderson, B.D.O. On the scalar rational interpolation problem. IMA J. Math. Control Inf. 3 (2–3), 61–88 (1986) MATH CrossRef
Belouchrani, A. Abed-Meraim, K. Cardoso, J. Moulines, E. A blind source separation technique using second-order statistics. IEEE Trans. Sig. Process. 45 (2), 434–444 (1997) CrossRef
Boussé, M. Debals, O. De Lathauwer, L. Deterministic blind source separation using low-rank tensor approximations. Internal report 15–59, ESAT-STADIUS, KU Leuven, Belgium, April 2015
Boussé, M. Debals, O. De Lathauwer, L. A novel deterministic method for large-scale blind source separation. In: Proceedings of the 23rd European Signal Processing Conference (EUSIPCO 2015, Nice, France), August 2015. Accepted for publication
Bruckstein, A.M. Donoho, D.L. Elad, M. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51 (1), 34–81 (2009) MATH MathSciNet CrossRef
Cardoso, J.F. Souloumiac, A. Blind beamforming for non-gaussian signals. IEE Proceedings F Radar Sig. Process. 140 (6), 362–370 (1993) CrossRef
Cichocki, A. Mandic, D. Phan, A.H. Caiafa, C. Zhou, G. Zhao, Q. De Lathauwer, L. Tensor decompositions for signal processing applications: from two-way to multiway component analysis. IEEE Sig. Process. Mag. 32 (2), 145–163 (2015) CrossRef
Cichocki, A. Zdunek, R. Phan, A. Amari, S. Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation. Wiley, Hoboken (2009) CrossRef
Comon, P. Independent component analysis, a new concept? Sig. Process. 36 (3), 287–314 (1994) MATH CrossRef
Comon, P. Jutten, C.
Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press, New York (2010)
De Lathauwer, L. A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM J. Matrix Anal. Appl. 28 (3), 642–666 (2006) MATH MathSciNet CrossRef
De Lathauwer, L. Decompositions of a higher-order tensor in block terms – Part II: definitions and uniqueness. SIAM J. Matrix Anal. Appl. 30 (3), 1033–1066 (2008) MATH MathSciNet CrossRef
De Lathauwer, L. Blind separation of exponential polynomials and the decomposition of a tensor in rank- \((L_r, L_r,1)\) terms. SIAM J. Matrix Anal. Appl. 32 (4), 1451–1474 (2011) MATH MathSciNet CrossRef
De Lathauwer, L. Castaing, J. Tensor-based techniques for the blind separation of DS-CDMA signals. Sig. Process. 87 (2), 322–336 (2007) MATH CrossRef
De Lathauwer, L. Nion, D. Decompositions of a higher-order tensor in block terms – Part III: alternating least squares algorithms. SIAM J. Matrix Anal. Appl. 30 (3), 1067–1083 (2008) MATH MathSciNet CrossRef
De Vos, M. Decomposition methods with applications in neuroscience. Ph.D. thesis, KU Leuven (2009)
Debals, O. Van Barel, M. De Lathauwer, L. Blind signal separation of rational functions using Löwner-based tensorization. In: IEEE Proceedings on International Conference on Acoustics, Speech and Signal Processing, pp. 4145–4149. April 2015. Accepted for publication
Debals, O. Van Barel, M. De Lathauwer, L. Löwner-based blind signal separation of rational functions with applications.

Internal report 15–44, ESAT-STADIUS, KU Leuven, Belgium, March 2015
Deburchgraeve, W. Cherian, P. De Vos, M. Swarte, R. Blok, J. Visser, G.H. Govaert, P. Van Huffel, S. Neonatal seizure localization using PARAFAC decomposition. Clin. Neurophysiol. 120 (10), 1787–1796 (2009) CrossRef
Domanov, I. De Lathauwer, L. On the uniqueness of the canonical polyadic decomposition of third-order tensors – Part I: basic results and uniqueness of one factor matrix. SIAM J. Matrix Anal. Appl. 34 (3), 855–875 (2013) MATH MathSciNet CrossRef
Domanov, I. De Lathauwer, L. On the uniqueness of the canonical polyadic decomposition of third-order tensors – Part II: uniqueness of the overall decomposition. SIAM J. Matrix Anal. Appl. 34 (3), 876–903 (2013) MATH MathSciNet CrossRef
Donoho, D. Stodden, V. When does non-negative matrix factorization give a correct decomposition into parts? In: Advances in Neural Information Processing Systems (2003)
Dreesen, P. Ishteva, M. Schoukens, J. Decoupling multivariate polynomials using first-order information and tensor decompositions. SIAM J. Matrix Anal. Appl. 36 (2), 864–879 (2015) MathSciNet CrossRef
Eggert, J. Korner, E. Sparse coding and NMF. IEEE Proc. Int. Joint Conf. Neural Netw. 4. 2529–2533 (2004)
Elad, M. Milanfar, P. Golub, G.H. Shape from moments – an estimation theory perspective. IEEE Trans. Sig. Process. 52 (7), 1814–1829 (2004) MathSciNet CrossRef
Georgiev, P. Theis, F. Cichocki, A. Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Trans. Neural Netw. 16 (4), 992–996 (2005) CrossRef
Gillis, N. Nonnegative matrix factorization: complexity, algorithms and applications. Ph.D. thesis, UCL (2011)
Grasedyck, L. Polynomial approximation in hierarchical Tucker format by vector tensorization, April 2010
Harman, H.H. Modern Factor Analysis, 3rd edn. University of Chicago Press, Chicago (1976)
Hoyer, P.O. Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5. 1457–1469 (2004) MATH MathSciNet
Hunyadi, B. Camps, D. Sorber, L. Van Paesschen, W. De Vos, M. Van Huffel, S. De Lathauwer, L. Block term decomposition for modelling epileptic seizures. EURASIP J. Adv. Sig. Process. 2014 (1), 1–19 (2014) CrossRef
Jiang, T. Sidiropoulos, N.D. ten Berge, J.M. Almost-sure identifiability of multidimensional harmonic retrieval. IEEE Trans. Sig. Process. 49 (9), 1849–1859 (2001) CrossRef
Kolda, T.G. Bader, B.W. Tensor decompositions and applications. SIAM Rev. 51 (3), 455–500 (2009) MATH MathSciNet CrossRef
Kroonenberg, P. Applied Multiway Data Analysis, vol. 702. Wiley-Interscience, Hoboken (2008) MATH CrossRef
Kruskal, J.B. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl. 18 (2), 95–138 (1977) MATH MathSciNet CrossRef
Lee, D. Seung, H. et al. Learning the parts of objects by non-negative matrix factorization. Nature 401 (6755), 788–791 (1999) CrossRef
McCullagh, P. Tensor Methods in Statistics, vol. 161. Chapman and Hall, London (1987) MATH
Nikias, C.L. Petropulu, A.P. Higher-Order Spectra Analysis: A Nonlinear Signal Processing Framework. PTR Prentice Hall, Englewood Cliffs (1993) MATH
Paatero, P. Tapper, U. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5 (2), 111–126 (1994) CrossRef
Pham, D.T. Cardoso, J.F. Blind separation of instantaneous mixtures of nonstationary sources. IEEE Trans. Sig. Process. 49 (9), 1837–1848 (2001) MathSciNet CrossRef
Roemer, F. Haardt, M. Del Galdo, G. Higher order SVD based subspace estimation to improve multi-dimensional parameter estimation algorithms. In: Fortieth Asilomar Conference on Signals, Systems and Computers, pp. 961–965. IEEE (2006)
Sidiropoulos, N.D. Generalizing Caratheodory’s uniqueness of harmonic parameterization to N dimensions. IEEE Trans. Inf. Theory 47 (4), 1687–1690 (2001) MATH MathSciNet CrossRef
Smilde, A.K. Bro, R. Geladi, P. Wiley, J. Multi-way Analysis with Applications in the Chemical Sciences. Wiley Chichester, UK (2004) CrossRef
Vandevoorde, D. A fast exponential decomposition algorithm and its applications to structured matrices. Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY (1998)
Zibulevsky, M. Pearlmutter, B. Blind source separation by sparse decomposition in a signal dictionary. Neural Comput. 13 (4), 863–882 (2001) MATH CrossRef
About this Chapter
Title Stochastic and Deterministic Tensorization for Blind Signal Separation Book Title Latent Variable Analysis and Signal Separation Book Subtitle 12th International Conference, LVA/ICA 2015, Liberec, Czech Republic, August 25-28, 2015, Proceedings Pages pp 3-13 2015 DOI 10.1007/978-3-319-22482-4_1 Print ISBN 978-3-319-22481-7 Online ISBN 978-3-319-22482-4 Series Title Lecture Notes in Computer Science Series Volume 9237 Series ISSN 0302-9743 Publisher Springer International Publishing Holder Springer International Publishing Switzerland Additional Links
- About this Book
Topics
- Pattern Recognition
- Image Processing and Computer Vision
- Simulation and Modeling
- Algorithm Analysis and Problem Complexity
- Discrete Mathematics in Computer Science
- Special Purpose and Application-Based Systems
Keywords
- Blind source separation
- Independent component analysis
- Tensorization
- Canonical polyadic decomposition
- Block term decomposition
- Higher-order tensor
- Multilinear algebra
Industry Sectors
- Pharma
- Materials Steel
- Automotive
- Biotechnology
- Electronics
- IT Software
- Telecommunications
- Consumer Packaged Goods
- Aerospace
- Engineering
eBook Packages
- Computer Science
Editors
- Emmanuel Vincent (13)
- Arie Yeredor (14)
- Zbyněk Koldovský (15)
- Petr Tichavský (16)
Editor Affiliations
- 13. Inria
- 14. Tel Aviv University
- 15. Technical University of Libere
- 16. The Czech Academy of Sciences
Authors
- Otto Debals (17) (18) (19)
- Lieven De Lathauwer (17) (18) (19)
Author Affiliations
- 17. Department of Electrical Engineering (ESAT) – STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Kasteelpark Arenberg 10, 3001, Leuven, Belgium
- 18. Group Science, Engineering and Technology, KU Leuven Kulak, E. Sabbelaan 53, 8500, Kortrijk, Belgium
- 19. iMinds Medical IT, KU Leuven, Kasteelpark Arenberg 10, 3001, Leuven, Belgium
Continue reading.
To view the rest of this content please follow the download PDF link above.