Home » Proposal » Lieven de lathauwer thesis proposal

Lieven de lathauwer thesis proposal

Lieven de lathauwer thesis proposal Almost-sure identifiability of multidimensional

Antoulas, A.C. Anderson, B.D.O. On the scalar rational interpolation problem. IMA J. Math. Control Inf. 3 (2–3), 61–88 (1986) MATH CrossRef

Belouchrani, A. Abed-Meraim, K. Cardoso, J. Moulines, E. A blind source separation technique using second-order statistics. IEEE Trans. Sig. Process. 45 (2), 434–444 (1997) CrossRef

Boussé, M. Debals, O. De Lathauwer, L. Deterministic blind source separation using low-rank tensor approximations. Internal report 15–59, ESAT-STADIUS, KU Leuven, Belgium, April 2015

Boussé, M. Debals, O. De Lathauwer, L. A novel deterministic method for large-scale blind source separation. In: Proceedings of the 23rd European Signal Processing Conference (EUSIPCO 2015, Nice, France), August 2015. Accepted for publication

Bruckstein, A.M. Donoho, D.L. Elad, M. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51 (1), 34–81 (2009) MATH MathSciNet CrossRef

Cardoso, J.F. Souloumiac, A. Blind beamforming for non-gaussian signals. IEE Proceedings F Radar Sig. Process. 140 (6), 362–370 (1993) CrossRef

Cichocki, A. Mandic, D. Phan, A.H. Caiafa, C. Zhou, G. Zhao, Q. De Lathauwer, L. Tensor decompositions for signal processing applications: from two-way to multiway component analysis. IEEE Sig. Process. Mag. 32 (2), 145–163 (2015) CrossRef

Cichocki, A. Zdunek, R. Phan, A. Amari, S. Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation. Wiley, Hoboken (2009) CrossRef

Comon, P. Independent component analysis, a new concept? Sig. Process. 36 (3), 287–314 (1994) MATH CrossRef

Comon, P. Jutten, C.

Lieven de lathauwer thesis proposal of the canonical

Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press, New York (2010)

De Lathauwer, L. A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM J. Matrix Anal. Appl. 28 (3), 642–666 (2006) MATH MathSciNet CrossRef

De Lathauwer, L. Decompositions of a higher-order tensor in block terms – Part II: definitions and uniqueness. SIAM J. Matrix Anal. Appl. 30 (3), 1033–1066 (2008) MATH MathSciNet CrossRef

De Lathauwer, L. Blind separation of exponential polynomials and the decomposition of a tensor in rank- \((L_r, L_r,1)\) terms. SIAM J. Matrix Anal. Appl. 32 (4), 1451–1474 (2011) MATH MathSciNet CrossRef

De Lathauwer, L. Castaing, J. Tensor-based techniques for the blind separation of DS-CDMA signals. Sig. Process. 87 (2), 322–336 (2007) MATH CrossRef

De Lathauwer, L. Nion, D. Decompositions of a higher-order tensor in block terms – Part III: alternating least squares algorithms. SIAM J. Matrix Anal. Appl. 30 (3), 1067–1083 (2008) MATH MathSciNet CrossRef

De Vos, M. Decomposition methods with applications in neuroscience. Ph.D. thesis, KU Leuven (2009)

Debals, O. Van Barel, M. De Lathauwer, L. Blind signal separation of rational functions using Löwner-based tensorization. In: IEEE Proceedings on International Conference on Acoustics, Speech and Signal Processing, pp. 4145–4149. April 2015. Accepted for publication

Debals, O. Van Barel, M. De Lathauwer, L. Löwner-based blind signal separation of rational functions with applications.

Lieven de lathauwer thesis proposal University of Chicago Press, Chicago

Internal report 15–44, ESAT-STADIUS, KU Leuven, Belgium, March 2015

Deburchgraeve, W. Cherian, P. De Vos, M. Swarte, R. Blok, J. Visser, G.H. Govaert, P. Van Huffel, S. Neonatal seizure localization using PARAFAC decomposition. Clin. Neurophysiol. 120 (10), 1787–1796 (2009) CrossRef

Domanov, I. De Lathauwer, L. On the uniqueness of the canonical polyadic decomposition of third-order tensors – Part I: basic results and uniqueness of one factor matrix. SIAM J. Matrix Anal. Appl. 34 (3), 855–875 (2013) MATH MathSciNet CrossRef

Domanov, I. De Lathauwer, L. On the uniqueness of the canonical polyadic decomposition of third-order tensors – Part II: uniqueness of the overall decomposition. SIAM J. Matrix Anal. Appl. 34 (3), 876–903 (2013) MATH MathSciNet CrossRef

Donoho, D. Stodden, V. When does non-negative matrix factorization give a correct decomposition into parts? In: Advances in Neural Information Processing Systems (2003)

Dreesen, P. Ishteva, M. Schoukens, J. Decoupling multivariate polynomials using first-order information and tensor decompositions. SIAM J. Matrix Anal. Appl. 36 (2), 864–879 (2015) MathSciNet CrossRef

Eggert, J. Korner, E. Sparse coding and NMF. IEEE Proc. Int. Joint Conf. Neural Netw. 4. 2529–2533 (2004)

Elad, M. Milanfar, P. Golub, G.H. Shape from moments – an estimation theory perspective. IEEE Trans. Sig. Process. 52 (7), 1814–1829 (2004) MathSciNet CrossRef

Georgiev, P. Theis, F. Cichocki, A. Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Trans. Neural Netw. 16 (4), 992–996 (2005) CrossRef

Gillis, N. Nonnegative matrix factorization: complexity, algorithms and applications. Ph.D. thesis, UCL (2011)

Grasedyck, L. Polynomial approximation in hierarchical Tucker format by vector tensorization, April 2010

Harman, H.H. Modern Factor Analysis, 3rd edn. University of Chicago Press, Chicago (1976)

Hoyer, P.O. Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5. 1457–1469 (2004) MATH MathSciNet

Hunyadi, B. Camps, D. Sorber, L. Van Paesschen, W. De Vos, M. Van Huffel, S. De Lathauwer, L. Block term decomposition for modelling epileptic seizures. EURASIP J. Adv. Sig. Process. 2014 (1), 1–19 (2014) CrossRef

Jiang, T. Sidiropoulos, N.D. ten Berge, J.M. Almost-sure identifiability of multidimensional harmonic retrieval. IEEE Trans. Sig. Process. 49 (9), 1849–1859 (2001) CrossRef

Kolda, T.G. Bader, B.W. Tensor decompositions and applications. SIAM Rev. 51 (3), 455–500 (2009) MATH MathSciNet CrossRef

Kroonenberg, P. Applied Multiway Data Analysis, vol. 702. Wiley-Interscience, Hoboken (2008) MATH CrossRef

Kruskal, J.B. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl. 18 (2), 95–138 (1977) MATH MathSciNet CrossRef

Lee, D. Seung, H. et al. Learning the parts of objects by non-negative matrix factorization. Nature 401 (6755), 788–791 (1999) CrossRef

McCullagh, P. Tensor Methods in Statistics, vol. 161. Chapman and Hall, London (1987) MATH

Nikias, C.L. Petropulu, A.P. Higher-Order Spectra Analysis: A Nonlinear Signal Processing Framework. PTR Prentice Hall, Englewood Cliffs (1993) MATH

Paatero, P. Tapper, U. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5 (2), 111–126 (1994) CrossRef

Pham, D.T. Cardoso, J.F. Blind separation of instantaneous mixtures of nonstationary sources. IEEE Trans. Sig. Process. 49 (9), 1837–1848 (2001) MathSciNet CrossRef

Roemer, F. Haardt, M. Del Galdo, G. Higher order SVD based subspace estimation to improve multi-dimensional parameter estimation algorithms. In: Fortieth Asilomar Conference on Signals, Systems and Computers, pp. 961–965. IEEE (2006)

Sidiropoulos, N.D. Generalizing Caratheodory’s uniqueness of harmonic parameterization to N dimensions. IEEE Trans. Inf. Theory 47 (4), 1687–1690 (2001) MATH MathSciNet CrossRef

Smilde, A.K. Bro, R. Geladi, P. Wiley, J. Multi-way Analysis with Applications in the Chemical Sciences. Wiley Chichester, UK (2004) CrossRef

Vandevoorde, D. A fast exponential decomposition algorithm and its applications to structured matrices. Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY (1998)

Zibulevsky, M. Pearlmutter, B. Blind source separation by sparse decomposition in a signal dictionary. Neural Comput. 13 (4), 863–882 (2001) MATH CrossRef

About this Chapter

Title Stochastic and Deterministic Tensorization for Blind Signal Separation Book Title Latent Variable Analysis and Signal Separation Book Subtitle 12th International Conference, LVA/ICA 2015, Liberec, Czech Republic, August 25-28, 2015, Proceedings Pages pp 3-13 2015 DOI 10.1007/978-3-319-22482-4_1 Print ISBN 978-3-319-22481-7 Online ISBN 978-3-319-22482-4 Series Title Lecture Notes in Computer Science Series Volume 9237 Series ISSN 0302-9743 Publisher Springer International Publishing Holder Springer International Publishing Switzerland Additional Links

  • About this Book


  • Pattern Recognition
  • Image Processing and Computer Vision
  • Simulation and Modeling
  • Algorithm Analysis and Problem Complexity
  • Discrete Mathematics in Computer Science
  • Special Purpose and Application-Based Systems


  • Blind source separation
  • Independent component analysis
  • Tensorization
  • Canonical polyadic decomposition
  • Block term decomposition
  • Higher-order tensor
  • Multilinear algebra

Industry Sectors

  • Pharma
  • Materials Steel
  • Automotive
  • Biotechnology
  • Electronics
  • IT Software
  • Telecommunications
  • Consumer Packaged Goods
  • Aerospace
  • Engineering

eBook Packages

  • Computer Science


  • Emmanuel Vincent (13)
  • Arie Yeredor (14)
  • Zbyněk Koldovský (15)
  • Petr Tichavský (16)

Editor Affiliations

  • 13. Inria
  • 14. Tel Aviv University
  • 15. Technical University of Libere
  • 16. The Czech Academy of Sciences


  • Otto Debals (17) (18) (19)
  • Lieven De Lathauwer (17) (18) (19)

Author Affiliations

  • 17. Department of Electrical Engineering (ESAT) – STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Kasteelpark Arenberg 10, 3001, Leuven, Belgium
  • 18. Group Science, Engineering and Technology, KU Leuven Kulak, E. Sabbelaan 53, 8500, Kortrijk, Belgium
  • 19. iMinds Medical IT, KU Leuven, Kasteelpark Arenberg 10, 3001, Leuven, Belgium

Continue reading.

To view the rest of this content please follow the download PDF link above.

Share this:
custom writing low cost
Order custom writing